Counting Points on Curves over Finite Fields
نویسندگان
چکیده
Stanford University) Abstract: A curve is a one dimensional space cut out by polynomial equations, such as y2=x3+x. In particular, one can consider curves over finite fields, which means the polynomial equations should have coefficients in some finite field and that points on the curve are given by values of the variables (x and y in the example) in the finite field that satisfy the given polynomials. A basic question is how many points such a curve has, and for a family of curves one can study the distribution of this statistic. We will give concrete examples of families in which this distribution is known or predicted, and give a sense of the different kinds of mathematics that are used to study different families. MSRI/Evans Talk
منابع مشابه
Fields of definition of torsion points on the Jacobians of genus 2 hyperelliptic curves over finite fields
This paper deals with fields of definition of the l-torsion points on the Jacobians of genus 2 hyperelliptic curves over finite fields in order to speed Gaudry and Schost’s point counting algorithm for genus 2 hyperelliptic curves up. A result in this paper shows that the extension degrees of the fields of difinition of the l-torsion points can be in O(l) instead of O(l). The effects of the res...
متن کاملGenerators of Finite Fields with Powers of Trace Zero and Cyclotomic Function Fields
Using the relation between the problem of counting irreducible polynomials over finite fields with some prescribed coefficients to the problem of counting rational points on curves over finite fields whose function fields are subfields of cyclotomic function fields, we count the number of generators of finite fields with powers of trace zero up to some point, answering a question of Z. Reichste...
متن کاملCounting Points for Hyperelliptic Curves of Type y2= x5 + ax over Finite Prime Fields
Counting rational points on Jacobian varieties of hyperelliptic curves over finite fields is very important for constructing hyperelliptic curve cryptosystems (HCC), but known algorithms for general curves over given large prime fields need very long running times. In this article, we propose an extremely fast point counting algorithm for hyperelliptic curves of type y = x + ax over given large...
متن کاملCounting the Number of Points on Elliptic Curves over Finite Fields: Strategies and Performance
Cryptographic schemes using elliptic curves over finite fields require the computation of the cardinality of the curves. Dramatic progress have been achieved recently in that field. The aim of this article is to highlight part of these improvements and to describe an efficient implementation of them in the particular case of the field GF (2n), for n ≤ 500.
متن کاملSatoh ' S Algorithm in Characteristic 2 Berit
We give an algorithm for counting points on arbitrary ordinary elliptic curves over finite fields of characteristic 2, extending the O(log q) method given by Takakazu Satoh, giving the asymptotically fastest point counting algorithm known to date.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 1998